skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hsieh, Cho-Jui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 3, 2026
  2. Free, publicly-accessible full text available April 28, 2026
  3. Free, publicly-accessible full text available April 23, 2026
  4. Free, publicly-accessible full text available April 22, 2026
  5. Free, publicly-accessible full text available November 12, 2025
  6. Free, publicly-accessible full text available November 11, 2025
  7. Discrimination-aware classification methods remedy socioeconomic disparities exacerbated by machine learning systems. In this paper, we propose a novel data pre-processing technique that assigns weights to training instances in order to reduce discrimination without changing any of the inputs or labels. While the existing reweighing approach only looks into sensitive attributes, we refine the weights by utilizing both sensitive and insensitive ones. We formulate our weight assignment as a linear programming problem. The weights can be directly used in any classification model into which they are incorporated. We demonstrate three advantages of our approach on synthetic and benchmark datasets. First, discrimination reduction comes at a small cost in accuracy. Second, our method is more scalable than most other pre-processing methods. Third, the trade-off between fairness and accuracy can be explicitly monitored by model users. Code is available athttps://github.com/frnliang/refined_reweighing. 
    more » « less